

LA-UR-21-25705

Approved for public release; distribution is unlimited.

Title: Calculations for the Scorpius Downstream Transport

Author(s): Ekdahl, Carl August Jr.

Intended for: Report

Issued: 2021-06-16

Calculations for the Scorpius Downstream Transport

Carl Ekdahl May, 2021

Over heating a beam stop can lead to damage, even if the temperature rise is insufficient to melt or dissociate the material.

- Heating the surface of a beam stop by $\Delta T > 300-400K$ desorbs monolayers of H_2O and other gases.
 - H₂O desorption is a concern because it is a source of light ions, e.g., H⁺
 - H₂O has been shown to be ubiquitous in vacuum systems like our LIAs.
- Impact dissociation and ionization of desorbed gas produces positive ions that are accelerated upstream into the beam space-charge potential well.
 - Positive ions partially neutralize the electron beam charge.
 - Neutralization factor is $f_e = N_i/N_e$
- H⁺ (protons) can be accelerated far enough upstream that space-charge neutralization is sufficient for the beam to magnetically pinch due to its current.
 - Neutralization $f_e > 1/\gamma^2$ is enough to overcome space-charge repulsion and permit pinching.
 - The tightly focused beam resulting from this ion focusing effect can damage the material.
- This effect has been demonstrated in a number of experiments.

Expanding the beam to reduce the beam-stop temperature rise can be accomplished by over-focusing with a solenoid.

- We have successfully used this technique to protect the DARHT-II beam stop from overheating by the 17-MeV, 1.7 kA, 2-µs FWHM beam.
- For the Scorpius beam stop, we studied the use of the TS1 solenoid to expand the beam.
 - We used the XTR envelope code and the LSP-S PIC code for this analysis.
 - Beam parameters at the accelerator exit were determined from simulations of transport through the full Scorpius LIA.
 - The magnetic field was calculated from the XTR solenoid model with parameters fit to field simulations based on the present TS1 design.
 - Axial locations were based on the present DST design.

Beam expansion using TS-1 can be simulated with the XTR envelope code.

- The envelope equations have been derived for an azimuthally symmetric current with arbitrary radial distribution.
 - XTR solves for $R_{env} = 2^{1/2}R_{rms}$
 - Valid for self-similar variations of beam size.
 - Useful for impulsive beam heating with pulse times much shorter than thermal diffusion times
- XTR is our "go-to" envelope code for intense relativistic beam transport with solenoidal focusing.
- Envelope tutorial: LA-UR-19-28456

Radial beam current distribution was simulated with LSP particle-in-cell (PIC) code.

- Relativistic beams are dominated by transverse forces.
 - Results of PIC simulations with a thin slice agree with full 3D simulations.
- The beam-slice algorithm for LSP enables cathode-to-target PIC simulations in finite wall-clock time on a Win10 workstation.
 - Fastest Simulations: 1D cylindrical geometry
 - Best Resolution: 2D Cartesian geometry
 - 1D and 2D results agree for azimuthally symmetric beams launched straight down the axis.
- For these initial estimates, I traded off resolution for speed, using a coarsely-zoned Cartesian geometry.

Locations for the DST simulations were taken from Juan's latest (?) spreadsheet.

			Pump Port	99448.38		
		6	Cell Magnet	99840.76		DST Coordinates
		0	AK Gap	100214.20	RF Gate Valve	15482
	BPM 22		врм	100666.17	The Gate Valve	15259.00
DST			Pump Port	100864.17		15061.00
Region1			Debris Blocker	101874.17		14051.00
			BPM	102745.17		13180.00
DST			Transport Solenoid	103168.17		12757.00
Region 2	BPM 23		врм	104004.17		11921.00
			Pump Port	104202.17		11723.00
DST	BPM 24		врм	105265.17		10660.00
Region 3	3		Beam Stop Graphite Face	105865.17	RF Gate Valve	10060.00
DCT	BPM 25		BPM	107302.17	T LE CALE VAIVE	8623.00

For this investigation I used the beam transported by a nominal tune that is also being used to assess beam stability.

- This tune was designed with XTR to match a beam with initial conditions from diode simulations with the TRAK e-gun code.
- An envelope-stable, matched beam is transported and accelerated through the LIA with this tune.
- LSP-Slice predicts no emittance growth for this tune.
- LAMDA simulations predict that maximum B-field less than 1.5 kG will suppress BBU growth to less than on DARHT-I.
- The DST is tuned for optimally-sized waist ($R \approx 1$ cm) entering the final focus solenoid.

Several physical effects contribute to the spot size, which can be minimized by tuning for optimum beam size entering the final focus

$$r_{spot}^2 = \left(\frac{\mathcal{E}_n f}{\beta \gamma R_0}\right)^2 + \sum R_{aberrations}^2 + \sum R_{beam-target}^2$$
Fundamental Focusing Ion Defocusing Minimum

Beam parameters that are under some degree of control (emittance, energy spread, and beam motion) all contribute to an enlarged spot size.

$$r_{spot}^{2} = \left(\frac{\varepsilon_{n} f}{\beta \gamma R_{0}}\right)^{2} + \left(\frac{2\delta \gamma}{\gamma} R_{0}\right)^{2} + \left(C_{S} R_{0}^{3}\right)^{2} + \left(\delta_{ions}\right)^{2}$$

Beam motion resulting from instabilities further blurs the time-integrated spot:

 $r_{blurred} = r_{spot} (1+0.01\Delta R\%)$

The spot size is relatively insensitive to errors in tuning for the optimum R_0 entering the final focus solenoid.

- Spot size can be minimized by tuning the downstream transport for the optimum R₀.
- Minimum spot achieved when each contributing effect is minimized.
- Beam motion blur due to instabilities does not change optimum R₀.
- Diagnostics required to establish optimum R₀ are emittance, energy and high-frequency motion, at least.

One can use a conservative estimate of the heating to bound the design.

- Impulsive beam heating of a target surface during a time much less than thermaldiffusion or hydro-expansion times can be estimated from:
- $\delta T = S_c (MeV-cm^2/g) \times J_{max}(kA/cm^2) \times dt(ns) / c_V(J/g/K)$
 - Collisional stopping power; S_c(22.4 MeV) = 1.826 MeV/(g/cm²)
 - Isochoric specific heat; c_v(290K) = 0.644 J/g-K
 - for T > 290K, $c_v > 0.644 \text{ J/g-K}$, so using this value is a conservative (over-estimate) of heating.
 - PIC code simulations suggest current distributions between uniform and Gaussian:
 - Uniform: $J_{max} = I_b/pR_{env}^2$
 - Gaussian: $J_{max} = I_b/pR_{rms}^2 = 2 \times J_{max}$ (Uniform)
 - These estimates bound the problem

Comments on specific heat, and its influence on beam-stop heating estimates.

- Tabulated specific heat is almost always isobaric; c_p
- Isochoric specific heat is always less than isobaric, $c_V = c_P VT\alpha^2/\beta$
 - β = compressibility, α = coefficient of thermal expansion
- => using c_p rather than c_V underestimates temperature increase, especially since c_p increases with temperature more than c_V
- Using c_V at T = 300K overestimates the temperature increase, so is a conservative approach to design: $c_V(290K) = 0.644 J/gK$ for graphite

Using TS1 as the cruncher requires a solenoid capable of producing about 3-kG peak field.

color	B _{max} kG	R _{env} cm	R _{rms}	dT _U K	dT _G K	comment
Red	1.22	0.89	0.63	530	1060	Nominal Tune
Cyan	1.95	0.21	0.15			4-Layer limit ?
Green	2.89	1.66	1.17	152	304	Safe

Surface Heating

- 22.4 MeV
- 1.45 kA
- 4- pulses
- 80ns FWHM each
- Uniform Distribution
 - $J_{\text{max}} = I_{\text{b}} / \pi R_{\text{env}}^2$
- Gaussian Distribution
 - $J_{\text{max}} = I_b / \pi R_{\text{rms}}^2$
- $(R_{env} = 1.414 R_{rms})$

The new DARHT-II S2 solenoid can be used instead of the Scorpius 4-layer solenoid for transport and cruncher (TS1).

- Bare Scorpius 4-layer solenoid (godiva4)
 - [Leff(cm), Reff(cm), G/A, "n", alpha]
 - [58.13437,10.80557,4.61102,2.01033,0]: PerMag model
 - $1/f = Integral[k_{\beta}^2]\{z,-\infty,+\infty\}$; $k_{\beta} = B_z(kG)/3.4\beta\gamma$
 - Optimized transport for 1.2 kG (264A) & KE=22.4, f = 306 cm
 - Cs1 =0.0006165/cm²
 - Crunching with 3-kG (651A) & KE=22.4, f = 54 cm
- DARHT-II S2 solenoid (curly)
 - **1** [31.879,8.18079,15.07,2.83795,0]: Barlow map
 - Optimized transport for 1.72 kG (114A) & KE=22.4, f = 302 cm
 - Cs1 = $0.001753/\text{cm}^2$
 - Crunching with 4.1 kG (270A) & KE=22.4, f = 54 cm

The DST can be optimized to enter FF at Renv ∞ 1 cm using DARHT S2 at TS1 and the DML solenoid producing 200 G.

The beam distribution near the beam-stop was obtained from PIC code simulations of transport and acceleration through the LIA.

The tune transports a well-matched beam with almost no oscillations at high energy.

For this simulation the beam was slightly mismatched causing weak envelope oscillations and emittance growth.

Projection onto Y axis

Rrms = 1.05 cm en = 0.023 cm-radian

PIC simulations suggest that the maximum current density lies between that for Uniform and Gaussian distributions..

The peak current density is more than for a uniform beam of the same rms size carrying the same current, but more than for a Gaussian beam.

This suggests that the temperature rise will be in a range bounded by uniform and Gaussian distributions.

TS1 maximum field should be sufficient to prevent impulsive overheating.

Conclusions:

- Initial estimates suggest that using TS1 to expand the beam in order not to overheat the beam-stop will require a peak focusing field of 3 kG or more using a bare Scorpius 4-layer solenoid.
- The new DARHT-II S2 cruncher design can be used for TS1.
 - It's a shorter magnet (about ½ L), so equivalent focusing field for the same beam expansion is 4.1 kG.
- LSP PIC code simulations show that the beam current density radial profile evolves from uniform at the diode to convex at the LIA exit.
 - Current density is less centralized than Gaussian, which might be used as a limiting case for heating.
- The DST tune with S2 and energized DML can be optimized to enter the final focus at a waist with R_{env} about 1 cm for minimum spot size.

Future Directions:

- Corroborate PIC code current distribution with real data from DARHT-I imaging.
- Corroborate impulsive surface-temperature rise with thermodynamic codes.
 - Source energy deposition with Monte Carlo simulations based on Gaussian worst-case distribution (Cyltran, MCNP, Penelope, EGS, GEANT, etc.)
 - Include temperature dependent material properties (heat capacity, thermal conduction, etc.)
- Perform higher resolution PIC simulations.
 - Include beam expansion using TS1
 - Corroborate PIC code current distribution with real data from DARHT-I imaging.